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CHOOSING SENSOR CONFIGURATION
FOR A FLEXIBLE STRUCTURE
USING FULL CONTROL SYNTHESIS

Rick Lind!
NASA Dryden

Abstract

Optimal locations and types for feedback sensors which
meet design constraints and control requirements are dif-
ficult to determine. This paper introduces an approach
to choosing a sensor configuration based on Full Control
synthesis. A globally optimal Full Control compensator
is computed for each member of a set of sensor configura-
tions which are feasible for the plant. The sensor configu-
ration associated with the Full Control system achieving
the best closed-loop performance is chosen for feedback
measurements to an output feedback controller. A flexi-
ble structure is used as an example to demonstrate this
procedure. Experimental results show sensor configura-
tions chosen to optimize the Full Control performance
are effective for output feedback controllers.

Introduction

Choosing an effective set of sensor measurements is es-
sential for designing controllers to achieve stringent per-
formance and robustness goals. Often control require-
ments are not anticipated in the design stage for physi-
cal systems and sensor configurations are chosen in an ad
hoc manner. Flexible structures are especially challeng-
ing systems for choosing sensor locations and types due
to the large number of mode shapes. Also, tradeoffs must
be met by balancing the number of sensors needed to
observe the large number of closely spaced modes while
simultaneously considering the added weight and cost of
these additional sensors.
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The issue of choosing sensor locations has been stud-
ied by considering grammians for observability coupled
with minimizing a cost function. Skelton and DeLorenzo
choose a cost function as an LQG performance metric
formulated as the root mean square contribution of each
sensor output. Sensors associated with small cost func-
tions may be removed due to their low effectiveness [15].

Similar approaches are developed using modal proper-
ties. Kim and Jenkins choose a performance metric
based on modal controllability weighted by the modal
cost of Skelton [8]. This approach emphasizes both the
degree of controllability and modal participation in the
performance criteria. Lim defines a performance metric
using a weighted modal projection [9]). This approach is
based on a relationship between grammian singular val-
ues and modal observability. Actuator and sensor pairs
are chosen with principal directions parallel to the modes
with large singular values.

This paper considers an approach to choosing a sensor
configuration based on Full Control synthesis. The Full
Control system allows the controller to independently
affect every state and error signal. Computing the op-
timal Full Control controller is equivalent to computing
the optimal controller for a given set of sensors. Synthe-
sis of globally optimal controllers to minimize an H, or
4 upper bound is formulated in the Linear Matrix In-
equality (LMI) framework for Full Information feedback
and extended here to the dual problem of Full Control
synthesis [12, 13].

The issue of sensor configuration is closely associated
with the issue of control design. The optimal closed-
loop system requires an optimal configuration of sensors
and optimal gains in the compensator. Optimality in
only one of these areas will restrict the achievable perfor-
mance and robustness of the closed-loop system. Utiliz-
ing the Full Control system is advantageous for synthesis
and analysis of sensor configuration since a Full Control
compensator can be computed which is globally optimal.
The procedure will not be affected by local minima as-
sociated with control synthesis.



The technique presented in this paper considers a cho-
sen set of sensor locations. Globally optimal Full Con-
trol compensators are computed at each of these loca-
tions to determine the maximum performance and ro-
bustness level achievable. The sensor locations chosen
for implementation on the physical system correspond to
the sensor locations achieving the best Full Control per-
formance. There is no guarantee that the optimal Full
Control sensor locations are equivalent to the optimal
sensor locations for a general output feedback controller;
however, experiments indicate this technique can choose
effective configurations for a physical system.

This approach easily allows a sensor configuration to be
determined by considering variations in both type and
location of sensors. The plant model used to design con-
trollers for these configurations may be generated from
experimental data transfer functions or from a compu-
tational finite element model using a package such as
NASTRAN. Additionally, choosing actuator configuration
using globally optimal Full Information synthesis is a
natural extension to this technique [10].

Sensor configurations are chosen for a flexible structure
using the method described in this paper. Several sets
of sensor locations are considered for feedback measure-
ments to achieve vibration attenuation at different po-
sitions on the structure. Globally optimal Full Control
compensators are computed to determine the best sensor
configuration of the sets. Output feedback controllers are
generated and implemented on the experimental struc-
ture using feedback from these sensor configurations.

Robust Control Synthesis

Consider a state-space description of a linear time-
invariant plant P(s).
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where A € R"**, B; € R**™ B, € R"™™,(C; €
R™*" Cy € R™*" | and the E matrices of appropriate
similar dimensions.

Define Kp as the set of all real, rational, proper con-
trollers, K(s), which stabilize the closed-loop system.
Analyzing performance using the induced Ho norm
leads to the following minimization problem for Fi(P, K)
which is the linear fractional transformation (LFT) for
the lower loop of P closed with the controller K.

jat, s [ (PGw), K] = Jaf IFi () e

This is an M. optimal controller synthesis problem
which has been solved using state-space equations [3, 5].

The structured singular value, x, can be used to de-
termine robustness of the closed-loop system to struc-
tured modeling uncertainty and the achievable perfor-
mance level in the presence of real and complex uncer-
tainty. The uncertainty description is structured with
two types of blocks. The blocks are repeated scalar or
full block matrices. Let integers m,n,p define the number
of real scalar, complex scalar, and complex full blocks.
Define integers Ry,...,Rn such that the i** repeated
scalar block of real parametric uncertainty is of dimen-
sion R; x R;. Define similar integers Cy,...,Cp to de-
note the dimension of the complex repeated scalar blocks.
The structured uncertainty description A is assumed to
be norm bounded and belonging to the following set.

A = {diag (8F1Ig, ... 08 Ig 60 Ic, .. . 8510, Ay ... &)

: 67 € R,6C € C,A; € C7%}

Real parametric uncertainty is allowed to enter the prob-
lem as scalar or repeated scalar blocks. Complex uncer-
tainty enters the problem as scalar, repeated scalar or
full blocks.

The function u is defined as

1
na(P) = min {5(A) : det(I - PA) =0}

with u(P) = 0 if no A exists such that det(I — PA) = 0.

Upper and lower bounds for x4 have bee derived which
utilize two sets of scaling matrices which are structured
similar to the uncertainty block structures.

D = {diag (D},..., D}, D?,..., DS, d{L,,...,d;L.,)

: 0 < D= D*,DF € C**F: DP € C%*% d5 € C}

The second set of scalings in G affect only the real para-
metric uncertainty blocks.

G = {diag (Gi,.--,Gm,0,...,0) : G; € >R}

An upper bound for p is computed as an optimization [4].
The real/complex p upper bound reduces to the well
known complex pu upper bound when there are no real
parametric uncertainty blocks.
wP)< nf 5((DPD'+;G) (I + G’)*)
Geg
DeD

The structured singular value provides a measure of ro-
bustness in the presence of the defined structured un-
certainty. The D and G are restricted to be constant
matrices to scale with time-varying uncertainty in this
paper. The objective of control design is to maximize
robust performance which corresponds to minimizing p
in this framework.



Feasibility : Output Feedback System

‘Hoo control synthesis involves iterating over a set of fea-
sibility conditions. These conditions determine whether
a controller exists that achieves a desired closed-loop Hoo
norm value. A standard bisection search can be used to
find the lowest achievable norm value to within a given
accuracy. The optimal controller is computed using el-
ements of the plant and the solutions to the feasibility
conditions.

The controller feasibility and synthesis may be formu-
lated as state-space equations or in the LMI frame-
work [6, 7]. The feasibility conditions in the state-space
framework are two Riccati equations. The comparable
feasibility conditions in the LMI framework are gener-
ated by applying the Bounded Real Lemma and consid-
ering orthogonal subspaces to matrix elements.

A separate LMI formulation is developed for computing
optimal full information controllers [12, 13]. This ap-
proach uses algebraic arguments to demonstrate a con-
stant matrix condition which is equivalent to the state-
space Ho control problem. LMI feasibility conditions
are generated using a variant of Parrott’s theorem [14].

This paper will adopt a standard for denoting plant ma-
trices for ease of notation and convenience in theorems.
Denote P as the continuous-time state-space plant ma-
trix with the elements P(s) = {A, B,C, D}. Denote Mp
as the constant matrix whose entries are comprised of
the state-space elements of P.
P=D+C(sI-A)"'B & Mp= [ g g ]

The LMI feasibility conditions utilize a matrix T, which
is formulated for a real scalar a > 0.

T“=[¢2I_af \/EI]

This matrix is used to compute the following star prod-
uct LFT with A = (I + @A)™! defined for notational
convenience.

(I +ad)A
v2aCA

Computing the star product with T, has several impor-
tant properties. The most immediately noticed property
is the relationship between the star product and the bi-
linear transformation. The matrix P = F,(T,, P) is the
discrete-time formulation of the continuous-time plant
P. The star product also has a commutation property
such that F, (T, Fi(P,K)) = Fi(P, F,(Ts, K)).

FJ(Taa MP) =

V2aAB
E +aCAB

The following theorem demonstrates a constant matrix
condition, formulated using the star product, which is
equivalent to an #H, condition [13].

Theorem 1 Given the state-space plant P(8) and asso-
ciated constant matriz Mp along with the set D of scaling
matrices, then the following are equivalent.

1. There ezists D € D and stabilizing K € Kp such
that
IDYR(P,K)D ¥l < 1

2. There exists D € D and stabilizing K € Kp
along with real X = XT > 0 such that with
Z = diag(X, D),

(2R (Ta, R(Mp, K)ZF) < 1

3. There exists D € D and stabilizing K € Kp
along with real X = XT > 0 such that with
Z = diag(X, D),

7 (Z%E(F.(TQ,MP),K)Z%) <1

Now perform a change of variables. Denote {R,U,V,T}
as elements of the constant matrix term involving the
star product F,(T,, Mp). Introduce @ to replace K(I +
TK)™! in the closed-loop LFT for notational conve-
nience.

@M, K =R (| § | K) =R4vQy

The final theorem presents the pair of LMI optimiza-
tions that represent the Ho, controller feasibility condi-
tion for a general output feedback system. The variant
of Parrott’s theorem is applied to the constant matrix
condition involving the maximum singular value.

Theorem 2 Given the state-space plant P(s) and asso-
ciated constant malriz Mp with the star product elements
F (F, (Ta, Mp),K) = R+ UQV along with the set D of
scaling matrices, then the following are eguivalent.

1. There ezists stabilizing K € Kp and D € D such
that
ID}Fy(P, K)D™ #|oo < 1

2. There ezists stabilizing K € Kp and D € D
along with real X = XT > 0 such that with
Z = diag(X, D),

a(zi(R + UQV)z—%) <1

3. There exists stabilizing K € Kp and D € D
along with real X = XT > 0 such that with
Z = diag(X, D),

X(UT(RZ'RT - Z7Y)UL) <0
A(VL(RTZR-2z)V]) <0



Feasibility : Optimal Full Control

Consider the state-space Full Control plant P..

Al B I 0
Pfc= Cl DuOI

Ca|Dn 0 O

Define Mp,, as the constant matrix associated with the
state-space elements of Py.. Formulate the R,U,V ele-
ments of the star product term F, (7o, Mp,.) using the
term A = (I + aA)™! for notational convenience.

Re [ (I+aA)A V2aAB;
- L \/2QC1A Eu + aClABl ]
U - [ \/20:‘1?1 0
L aC;A I
v= [V2aC,A Eyz + aC3AB, |

The matrix U is square and invertible for the Full Con-
trol system. This full rank condition is anticipated by
the complete controllability of this system. A linearly
independent set of control vectors are available to affect
the states and error outputs of the plant. Correspond-
ingly, the perpendicular subspace, U, utilized in the
LMI conditions for H, controller feasibility is null.

The feasibility condition for existence of an H, con-
troller for Full Control feedback is reduced to a single
LMI. The LMI involving U, in Theorem 2 is vacuous
and automatically satisfied. The remaining LMI involv-
ing variables V and V constitutes the only condition for
Full Contro! feasibility as demonstrated in Theorem 3.

Theorem 3 Given the Full Control plant P;. and scal-
ing set D, define the following :

1. The augmented scaling matrices Z

— X 0 . — vT nxn
Z—-{[O D].O(X—X €ER ,DE'D}

2. Real scalar a > 0, so that (I — aA) is invertible
3. R and V as defined above

4. V. such that VTV, =0 and [ 4

vy ] is invertible

Then, there ezists a stabilizing K € Kp, and a constant
D € D such that

|p?F (e, k) D2

<1

o0

if and only if the following conver set is nonempty.

{Z € Z: Aoz [VL (R"ZR = Z)V]] < 0} # {8}

This formulation is easily extended to account for real
parametric uncertainty [2]. The maximum singular value
condition in Theorem 2 is replaced with the correspond-
ing condition from the real/complex u upper bound.
Consider this condition for the matrix system R+ UQV
including the additional scaling matrices G.

#(R+UQV)
< o ((D®R+UQV)D™ +G) (1+67)7H)
< 6(R+UQV)
where R=(DRD-!+;G)(I+G?)*
U = DU

P §
2

V=vD!(I+G?

The variant of Parrott’s theorem can be applied to this
new singular value condition in the variables R, U and V.
The new matrix U retains the desired full rank condition
since both D and U are invertible. Thus, a single LMI
represents the feasibility condition. Consider this LML

X(VL(RR-1)V})
=X (VoD ((D™'R*D - 3G) (DRD™ + 5G)
—(1+G%) DV})
=A(V.(R°DR+;(R*G-GR)-D)V})
where D=D?€D
G=DGDe€gG

This feasibility condition to determine existence of a con-
troller that satisfies a closed-loop u condition may be less
conservative than the previous condition since it directly
accounts for real parametric uncertainty. Theorem 4
combines Theorem 3 with the real/complex i bound.

Theorem 4 Given the Full Control plant P;. and scal-
ing sets D,G define the following :

1. The augmented scaling matrices Zp
X 0
Zp = {[ 0 D

2. The augmented scaling matrices Zg

a={[3 2 -0c9

3. R,V,V, and a as defined in Theorem 3.

:0<X=XT€R""",DGD}

Then, there erists a stabilizing K € Kp,, such that
u(Fi(Py, K)) <1
if the following convex set is nonemply.
{ZD € ZD,ZG € Zg :
X[VL(R*ZpR + )(R*Zg — ZgR) — Zp) V] < 0}



Choosig Sensor Conﬂguration

Synthesis of optimal Full Control compensators can be
used to determine efficient sensor configurations. The
Full Control system allows the controller to indepen-
dently affect every state and error signal. The previous
section demonstrates globally optimal controllers can be
computed for the Full Control system. Computing opti-
mal Full Control compensators is equivalent to comput-
ing the optimal controller for a given set of sensors.

An optimal sensor configuration can be chosen by min-
imizing the achievable Full Control performance level
with respect to a set of possible sensor configurations.
Plant models are generated for each sensor configuration
under consideration and a Full Control compensator is
computed for each plant using Theorem 4. The optimal
sensor configuration chosen with this method may not
be globally optimal over every possible sensor location
in the system; rather, it is optimal with respect to the
considered set of locations.

The following algorithm demonstrates this procedure.

Algorithm 1

o Define state-space elements of transfer function
from disturbances to ervors.

ABI]

P= Ci Dn

o Define set of n sensor configurations.

C; Dj
C7 Di
fori=1:n{
A B, I 0
Formulate P, = Ci Du 0 I
Ci Dii 0 0

Compute v; = ;}%t;c” (Fl( }csK))

}

Choose sensor configuration [C; Dg',]
corresponding to vy; = min~y;.
1

The plant model and associated set of sensor configura-
tions used in this algorithm may be generated using com-
putational packages, such as NASTRAN, or experimentally
derived transfer functions. Finite element models give
the freedom to easily compute a large number of sensor
configurations but may be subject to modeling errors.
Experimental data gives a more accurate representation
of the true system but it may be difficult to physically
reposition a large number of sensors and identify models
for each location.

Location, type, and number of sensors used in each con-
figuration, along with the total number of configurations
to be considered in the set, may be chosen using several
criteria. The set may reflect physical requirements lim-
iting the sensors to select configurations due to size of
the sensor, direction of sensing, wiring connections and
weight restrictions. The set may also be chosen based on
a prioni knowledge of the system and properties such as
symmetries, mode shapes, and previous control design
experience.

This algorithm is not guaranteed to generate a globally
optimal sensor configuration for output feedback con-
trollers. The computed optimal sensor location may not
even be optimal among the discrete set of sensor configu-
rations when considering an output feedback controller.
The computed sensor configuration is only optimal with
respect to a Full Control compensator; however, there are
many plants which can effectively utilize this method.
If the dominant modes affecting the achievable perfor-
mance are controllable, or nearly so, then the physical
actuator sets used for output feedback controllers will
be able to achieve, or nearly so, the performance of the
Full Control compensator.

A similar procedure can be formulated based on minimiz-
ing the achievable performance level of output feedback
controllers; however, there are advantages to using Full
Control synthesis. The Full Control compensators are
guaranteed to be globally optimal while output feedback
controllers, computed with methods such as D-K itera-
tion, are only locally optimal. A poor local minimum
may capture the output feedback controller synthesis for
a given sensor configuration. The resulting optimal sen-
sor configuration would be incorrectly computed due to
deficiencies in the control synthesis procedure.

Additionally, the Full Control synthesis is an LMI which
is easily solved with no user interaction using convex op-
timization algorithms. D-K iteration requires the user to
monitor the process and select weighting functions. Suc-
cessive D-K iterations might produce better, or worse,
performing controllers depending on these weight selec-
tions and initial conditions.



Flexible Structure : Model

Sensor configurations are chosen for vibration attenu-
ation of an experimental flexible structure. The flexi-
ble structure is constructed at the Dynamics and Con-
trols Laboratory in the Department of Aerospace Engi-
neering and Mechanics at the University of Minnesota.
This structure models a space truss for potential satel-
lite and space platform applications. The structure is
designed to place 12 lightly damped modes between 0
and 100 rad/sec. The flexible structure is represented in
Figure 1 and Figure 2.

Figure 1: University of Minnesota Flexible Structure

The structure consists of a rigidly held fixed top plate
and four hanging bays numbered 1 through 4 with Bay 1
being at the top of the structure and Bay 4 at the bot-
tom. Each bay contains an aluminum plate and thin hol-
low rods connecting corners of neighboring plates. The
top four plates are spaced .62 m apart while the bottom
plate is .47 m below the third bay. Plates in Bay 2 and
Bay 4 are triangular frames while the others are solid.

The actuators for control are contained in Bay 3. Three
actuators are colocated along diagonal rods connecting
the top and bottom plates of this bay. These force actu-
ators are voice-coil type actuators produced by Northern
Magnetics as ML3-1310-020LB with a limit of +2 pounds
of force. The working linear stroke is :i:% inch with an
effective bandwidth of 200 Hz.

Linear displacement sensors are colocated along the di-
rection of the force actuators in Bay 3. These sensors are
Trans-Tek 0242 type sensors with a working range of i%
inch. They have zero hysteresis and are linear to within
+.5% up to the bandwidth of 100 Hz.

Accelerometers may be placed along the edges of any
plate in any Bay. These accelerometers are ICSensor
3145-002 with a bandwidth of 300 Hz. These sensors are
aligned along the horizontal component of an actuator
and do not measure any vertical component of move-
ment.

Figure 2 shows the control elements in Bay 3. The colo-
cated actuators and displacement sensors are seen along
the diagonal rods. The accelerometers are placed atop
the horizontal edges of the triangular frame plate.

Figure 2: Control Elements in Bay 3

An analytical model is generated for the structure. A
NASTRAN model is available; however, this paper uses ex-
perimental data to formulate the model. Experimental
transfer functions are computed from the actuators to
the accelerometers on Bays 3 and 4 by commanding sinu-
soids of varying frequency to the actuators. System iden-
tification algorithms based on curve fitting techniques
and model reduction via balanced realization computes
a 38" order model. Transfer functions plots of the open-
loop peak gain for Bay 3 and Bay 4 accelerometers is
given in Figure 3.

fay 3 Open-Loap - SOLID ;‘
Bey 4 Open—Loop — DASHED

freq (rac/sec)

Figure 3: Open-Loop Peak Gains from Bay 3 Actuators to
Bay 3 and Bay 4 Accelerometers



Flexible Structure : Objective

It is desired to formulate controllers to attenuate vibra-
tion and lower the peak gains of the open-loop system.
Accelerometers are used as the performance signals with
a peak gain of approximately 10 for the 65 rad/sec mode.
Bay 3 accelerometers are located in the same bay as the
actuators so it is anticipated more performance can be
achieved for these sensors. Bay 3 attenuation is desired
to be approximately 4.6 while the performance request
for Bay 4 is a factor of 3.5 for attenuation. Performance
weightings, W::,?; and W:e",";, are included with the ac-
celerometer error signals to specify the desired attenua-
tion levels.

T~ 10

Additive uncertainty between the control inputs and sen-
sor measurements is included to account for unmodeled
dynamics and neglected high frequency modes. A dy-
namic weighting, W44, is affected on each displacement
and accelerometer sensor for feedback.

82 — 728 + 4790
82 — 2058 + 28910

Wada = 4

The physical actuator positions are affected by a distur-
bance input. A constant weighting, Wy;,e = .5, is in-
cluded to normalize the disturbance signal affecting each
control channel. Sensor noise is also included in the sys-
tem to affect the accelerometer feedback measurements.
Constant weightings of Wy, = .01 are included to nor-
malize the noise affecting each sensor.

The magnitude of the control signal for each physical
actuator is included as a performance error to limit the
amount of control actuation. A weighting of W,y = .2
is used as the performance penalty for each actuator.

The open-loop flexible structure model with uncertainty
blocks and weightings in given in Figure 4.

ldisturba.nces
actuator
W,
penalty act Wiaist
errors
S W rery Flex fr—be—
Aadd | Waaa
nois_x_e;_ W feedback
noeq measurements

Figure 4: Flexible Structure Block Diagram

Flexible Structure : Full Control Synthesis

Full Control compensators are computed for systems de-
rived as subsets of the flexible structure model in Fig-
ure 4. This block diagram is designed with 6 accelerom-
eters and 3 displacement sensors for performance errors
and feedback measurements. These 9 sensors are divided
into 3 groups of 3 with the following notation.

34,34,33 - displacement sensors in Bay 3
3:,32,33 - acceleration sensors in Bay 3
4,,42,43 - acceleration sensors in Bay 4

The subscript on the sensor designations indicates the
horizontal component of the sensing direction. The
accelerometers are placed along edges of the horizon-
tal plates while the displacement sensors are colocated
along the diagonal rods connecting corners of neighbor-
ing plates with the same horizontal direction of sensing
as the accelerometers. Sensors 3‘1‘,31 and 4; are located
along the same edges of plates on the same side of the
structure and consequently have the same horizontal di-
rection of sensing.

The uncertainty structure for the system in Figure 4 has
a single uncertainty block. This block represents addi-
tive uncertainty on the sensor signals used for feedback
measurements to the controller. This uncertainty, Aggq,
is a complex operator to allow variations in both magni-
tude and phase. A,4q is treated as an unstructured full
block uncertainty for controller synthesis.

A performance block will also be included in the con-
troller synthesis procedure. This block relates the noise
and disturbance inputs to the performance errors. There
are 3 noise disturbances affecting the 3 physical actua-
tors and 9 noise inputs for the sensors. The performance
errors are composed of 3 penalties on the amount of ac-
tuation and 6 weightings on the accelerometers.

Initial controllers are synthesized to determine the type
of sensors to use for feedback. Full Control compensators
are computed for the system with Bay 3 accelerome-
ters, 3, 32, 33, used as the error signals to be minimized
and feedback measurements of either the Bay 3 displace-
ments, 3¢,34,34, or the Bay 3 accelerations, 3;,3;,33.
The optimal achievable H,, norm was lower using the ac-
celerometers than the displacement sensors for feedback.
This result agrees with previous analysis of the structure
indicating the accelerometers are generally more effective
than the displacement sensors for vibration attenuating
controllers [11]. The control designs presented in this pa-
per will ignore the displacement sensors and only utilize
the accelerometers.



Full Control compensators are computed for several con-
figurations of accelerometers. The performance errors
used for vibration attenuation are chosen to be either
the Bay 3 accelerometers, {3,,32,33}, or the Bay 4 ac-
celerometers, {41,43,43}. Several combinations of these
sensors are used for feedback measurements with either
2 or 3 sensors in each combination. The number of
combinations is reduced by symmetry arguments which
indicate {3;,32} should be as effective as {3,,33} and
{32,33}. The achievable pu performance levels for the
optimal Full Control compensators are given in Table 1.

Feedback Bay 3 Bay 4
Accelerometers Performance Performance
”31132)33“00 “41)42743"00
31,32 1.378 3.031
31,32,33 0.299 0.719
4,44 1.641 0.656
4,,45,43 0.299 0.511
31,4: 3.281 1.312
31,42 1.641 0.609

Table 1: Achievable Full Control s Performance Levels

Flexible Structure : Bay 3 Attenuation

Analysis of the first performance column of Table 1 in-
dicates the effectiveness of various sensor configurations
for providing feedback to control Bay 3 accelerometers.

The most effective sensor configuration for Bay 3 vibra-
tion attenuation is to use three sensors in the same bay.
Feedback configurations using all Bay 3 sensors or us-
ing all Bay 4 sensors achieve u = .299 for Full Control
closed-loop performance. These performance levels are
similar since the set of sensors in each bay is able to ob-
serve the dynamics of Bay 3. Each set of accelerometers
is able to provide sufficient information to the controller
to attenuate the Bay 3 vibration responses.

Restricting the feedback to only two sensors significantly
decreases the optimal performance level. The pu valuesin-
crease by approximately a factor of 4 when using {3,,32}
as compared to {3;,32,3a} for feedback. The perfor-
mance decreases even more if the two sensor are aligned
in the same direction. The x of 3.28 is for {3:,4:} is
twice the 4 = 1.64 value achieved when using {3,,42}.

Output feedback controllers are generated using D-K it-
eration for vibration attenuation of the Bay 3 accelerom-
eters. Separate controllers are designed for 2 different
feedback configurations. The first controller, K3, will
use the 3 sensors in Bay 3 to control vibration in Bay 3.
The second controller, K3 will feedback the 3 sensors in
Bay 4 to attenuate vibration in Bay 3.

Robust stability is plotted for each controller in Figure 5.
The peak robust stability x values are .445 for K3 and
.456 for K. p is less than one for each controller to
indicate the desired robustness objectives are achieved.

2} Bay3 edback - SOUID
Bay 4 Seedback - DAGHED

0S¢

froq (racisec)

Figure 5: u for Robust Stability

Nominal performance is also calculated for each con-
troller as 1.152 for K3 and 1.880 for K. The weighted
norms greater than 1 indicate neither controller is able to
achieve the desired performance objectives. u for nomi-
nal performance is plotted in Figure 6.

freq (radfeec)

Figure 6: u for Nominal Performance

The robust performance p values for each controller is
given in Figure 7. The p upper bounds are computed as
1.296 for K2 and 2.065 for K3. Each controller gives a
peak u greater than 1 indicating robust performance is
not achieved for either output feedback controller.

The robust performance pu plots are of similar shape for
each controller with peaks at 104 rad/sec even though p
for K2 is much higher. Both controllers are driven by
meeting the performance goals as evidenced by Figure 6.
The open-loop gains in Figure 3 are smaller from the
actuators to the Bay 4 sensors as compared to the Bay 3
sensors. K3 is unable to increase the controller gains to
match the performance of K3 due to the penalty on the
amount of control actuation.



2  Oay 3 feedback - SOUD
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Figure 7: p for Robust Performance

The Full Control synthesis results indicated controllers
could be computed which achieve similar performance
levels using either Bay 3 or Bay 4 feedback. There are
several possible explanations to account for the poor per-
formance of K3 in comparison to K2. The Full Control
results are based on a globally optimal controller while
D-K iteration may have computed a K3 far from opti-
mal. Also, the optimal Full Control compensator may
be realized as a constant gain controller while K7 was
greatly affected by bandwidth constraints.

Peak gains of the experimental closed-loop transfer func-
tions are plotted in Figure 8. K2 provides better attenu-
ation for the modal response at 64 rad/sec which agrees
with Figure 7. Neither controller is able to provide the
desired attenuation above 104 rad/sec.

10" L.

10' 10"

oq rachach
Figure 8: Experimental Closed-Loop Peak Gains for Bay 3
Accelerometers with K3 (—) and K3 (- - -)

The similar performance levels on the physical struc-
ture somewhat contradict the output feedback u anal-
ysis, which anticipated K3 should provide 40% better
attenuation, but agree more closely with the Full Con-
trol analysis, which anticipated each controller should
provide similar attenuation levels.

Flexible Structure : Bay 4 Attenuation

The achievable performance levels of optimal Full Con-
trol compensators to attenuate vibrations measured by
Bay 4 accelerometers for various sensor configurations is
given in the last column of Table 1.

These performance levels clearly indicate some measure
of the Bay 4 accelerometers is required for adequate at-
tenuation of Bay 4 vibrations. Synthesizing a Full Con-
trol compensator using the entire set of Bay 3 accelerom-
eters achieves a u value of .719 while a u value is .511 is
achieved using the three Bay 4 accelerometers.

The need for utilizing Bay 4 accelerometers to control
Bay 4 vibrations is demonstrated by the open-loop modal
responses in Figure 3. A torsional mode exists at 62
rad/sec that is clearly observable by Bay 4 but does not
appear in the frequency response data of Bay 3. Any
feedback configuration utilizing only Bay 3 sensors fails
to provide information to the controller about the tor-
sional mode dynamics at this frequency. Consequently,
the controller can not properly cancel these dynamics as
is demonstrated by the poor closed-loop performance.

Output feedback controllers are generated using D-K it-
eration for vibration attenuation of the Bay 4 accelerom-
eters. Separate controllers are designed for 2 different
feedback configurations. The first controller, K3, will
use the 3 sensors in Bay 3 to control vibration in Bay 4.
The second controller, K}, will feedback the 3 sensors in
Bay 4 to attenuate vibration in Bay 4. Magnitude plots
are given for K3 in Figure 9a and for K} in Figure 9b.

10 10’ 1’ 1w’
fequency (ralsed)

Figure 9: Magnitude Gains for K3 (a) and K} (b)

Robust stability for the linear plant model with each
controller with respect to the uncertainty description in
Figure 1 is computed using u. All uncertainty operators
are complex and linear, time-invariant. Each controller
achieves robust stability with x values of .789 for K} and
.707 for K. Robust stability u is shown in Figure 10.



Figure 10: 4 for Robust Stability

Nominal performance is also calculated for each con-
troller as .543 for K} and 1.199 for K3. The weighted
norm greater than 1 indicates K3 using the Bay 3 sensors
for feedback is unable to achieve the desired performance
objectives. K} presents a u less than 1 and is able to
achieve nominal performance. Nominal performance p
is plotted in Figure 11.

[ Bay 3 fesdback - SOLID
Bay 4 feadback — DASHED

Figure 11: u for Nominal Performance

The robust performance u values for each controller are
given in Figure 12. The u upper bounds are computed as
.982 for K} and 1.269 for K. The controller using Bay 4
feedback, K}, is able to achieve robust performance while
K} is unable to achieve the desired robustness goals due
to its associated u being greater than 1.

The u plots show controller synthesis of K} is driven by
the unobserved torsional mode at 62 rad/sec. The con-
troller is able to lower the weighted nominal performance
measure to less than 1 near this modal frequency; how-
ever, the robust stability x is raised as a tradeoff. Robust
performance i demonstrates K3 is unable to simulta-
neously achieve the desired performance and robustness
goals with the peak p occurring at 62 rad/sec.

10

10’ 10*
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Figure 12: x for Robust Performance

The peak u for robust performance with K} occurs at
104 rad/sec. This is the 4** bending mode which is only
weakly observed by Bay 4 and has a high level of additive
uncertainty. K} does not receive sufficient information
about this mode in the presence of the noise and addi-
tive uncertainty and thus the closed-loop performance is
only slightly more attenuated than the open-loop perfor-
mance. The controller bandwidths in Figures 9a and 9b
show K73 is able to roll off noticeably faster than K} due
to observance of this mode.

Implementing each controller configuration on the ex-
perimental flexible structure produces performance lev-
els which agree with the Full Control synthesis results.
Using Bay 4 accelerometers as feedback measurements
allows better vibration attenuation than using Bay 3
feedbacks. Peaks gains of closed-loop transfer functions
from the experimental flexible structure are presented in
Figure 13. K3 demonstrates the expected poor perfor-
mance in attenuating the 62 rad/sec mode while K} is
able to attenuate each mode to nearly equal peak gains
as expected by the pu plots.

10 10"
freq (radvsec)

Figure 13: Experimental Closed-Loop Peak Gains for Bay 4
Accelerometers with K3 (—) and K (- - -)
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